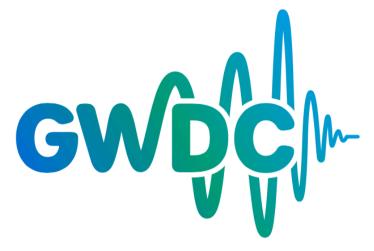
ASTRONOMY DATA AND COMPUTING SERVICES

An Australian Government Initiative

Astronomy Australia Ltd.

SWINBURNE UNIVERSITY OF TECHNOLOGY


Curtin University

- Vision:
 - *astronomy-focused* training, support and expertise to maximise scientific return on investments in astronomical data & computing infrastructure
 - 3 service components:
 - 1. Training (face-to-face, webinars, internships)
 - 2. Astronomy software support for the OzSTAR supercomputer
 - 3. National Support
 - Professional software support
 - Astronomy Supercomputing Time Allocation committee (ASTAC)
 - Data management and collaboration platform (gDMCP)

• Two nodes:

- Swinburne University (Melbourne) principally responsible for software support
- Curtin University (Perth) principally responsible for training
- Commenced operations March 2017
- Funded by Astronomy Australia Limited (AAL) through the astronomy National Collaborative Research Infrastructure Strategy (NCRIS) allocation

GRAVITATIONAL WAVE DATA CENTRE

- Started operations July 2019
- Staffed @ 8-9 FTE through FY 21/22
- Operates alongside ADACS@Swinburne
- Guided by GWDC Science Advisory Panel
- Five core projects:

GWCloud, GWLab, SPIIR, MeerTime, GWLandscape

• Provides guaranteed ADACS MAP time to GW researchers

see <u>adacs.org.au/software-services/applying-to-the-adacs-merit-allocation-program</u> for directions Eol submission directions

Merit-based allocation of professional software development & training

- Methodology:
 - 1. Researchers respond to calls for **Expressions** of Interest (EoIs); 1 page description of project
 - 2. ADACS interviews applicant to coax-out detailed technical specifications
 - 3. **ADACS develops an assessment** of required development time and skills required
 - 4. Users complete a **detailed application** and quote the ADACS assessment for their project
 - 5. An **independent time allocation committee** (TAC) selects projects to be supported, reconciling requested and available resources

ADACS@Swinburne: What can we do?

- ~20 professional developers and research software engineers with expertise covering:
 - Scientific computing;
 - High performance computing;
 - Data science & machine learning;
 - Web development;
 - Large-scale scientific databases;
 - · Cloud computing/micro-service architectures; and
 - Scientific visualisation.

- ... augmented by a suitable mix of computationally skilled astronomers and product discovery & delivery professionals:
 - ensuring adequate domain & community knowledge;
 - trained User eXperience (UX) expertise; and
 - certified Agile product discovery & delivery

Software Support Program

Semester	Project Title	Project type	
2021A	Collaboration on Shared Codebases	training	
2021A	Global Firebal Observatory operations - Ansible	training	
2021A	ASVO UX Training	training	
2021A	Global Fireball Observatory - Astrometric calibration container	dev ops	
2021A	Universal Cosmic Ray Detection with CREDO	mobile app	
2021A	Modernisation of Software for Epoch of Reionisation Science	refactor	
2021A	3D Heat Transport, Burning, and Evolution	optimisation	
2021A	Optimising the SAMI cubing code	optimisation	
2021A	MPI Parallelisation of a Boltzmann Solver for Supernova Simulations	optimisation	Logond
2020B	GPU Acceleration of the DiFX Software Correlator	optimisation	<u>Legend</u>
2020B	Optimizing parallel Bilby (pBilby)	optimisation	
2020B	Software Support for GASKAP Imaging	optimisation	 Web application
2020B	A web based portal for COMPAS	web	
2020B	Extending the Data Central Simple Spectra Viewer	web	 CPU Optimisation
2020B	Optimisation of the COMPAS rapid binary population synthesis code	optimisation	
2020A	Global Cosmic Ray Detection	mobile app	 GPU Optimisation
2020A	Rapidly and Optimally Identifying Gravitational-Wave Optical Counterparts for GOTO	database	-
2020A	Fast becomes Faster: A Full OpenCL rewrite of Corrfunc	optimisation	Training
2020A	Software support for the SMART pulsar survey	web	
2019B	ProFound	optimisation	• Other
2019B	Final data release of the Australian Dark Energy Survey (OzDES)	web	
2019B	Parallelisation of the SoFiA Source Finding Pipeline	optimisation	
2019B	NBody and VR	optimisation	
2019B	An implementation of the BFDMT in CUDA	optimisation	
2019A	Bilby	web	
2019A	Spectrum viewer	web	
2019A	Building on Bilby-UI: bringing continuous gravitational wave science to the web	web	
2019A	A Webapp for modeliing the Galalxy	web	
2019A	DWF portal and database	web	
2018B	Extended MWA Survey Progress and Monitoring	web	
2018B	Bringing LIGO Science to the Masses	web	
2018B	Multi-threading ASKAPSoft Synthesis Imaging	optimisation	
2018B	Model dispersion with PRISM	optimisation	
2018B	Corrfunc Blazing Fast Correlation Functions Now on the GPU	optimisation	
2018A	An automated data reduction pipeline for AAO Data Central	data	
2018A	GPU acceleration of gravitational-wave signal models	optimisation	
2018A	Galaxy and black hole co evolution survey using active machine learning	web	
2017B	Speeding-up Reionization with GPUs	optimisation	
2017B	Building and Supporting User Communities with GPU-Accelerated Computing Services	web	

Training and Material Offered

Face to Face workshops

Over the past 2 years ADACS has delivered more than a dozen face-to-face events, ranging from outreach events, to halfday and multi-day workshops.

Github

Material we teach during these

workshops is generally made

available via our Github page

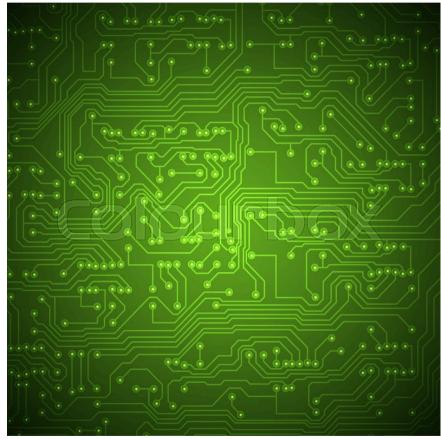
LMS

...

We have been developing a series of webinars to help the community master a variety of topics related to computing for astronomers. These webinars are a short series of informational videos compiled by theme on the ADACS LMS.

ADACS runs regular internships offering student the possibility to work on software development projects within astronomy Youtube Channel

Our youtube channel (ADACS learning) makes a selection of our LMS webinars available to the public.



A curated list of tutorials,information and cheat sheets from around the web on key skills for astronomy researchers that are not explicitly covered in our webinars.

I would like to explore three themes of how ADACS can be part of a green computing strategy for this community:

- 1. Professionally developed code:
 - Eliminate useless compute
- 2. Data portals:
 - Eliminate redundant compute
- 3. Software Optimisation:
 - ➡ New capabilities & new responsibilities

Professionally developed code: Eliminate useless compute

Professionally developed code has several *green advantages*:

- It's tested, so it works more reliably
 - Less compute lost to flawed execution
- It's easier to extend, refactor, etc
 - Less compute lost to wasteful debugging cycles
- It's easier to build communities around
 - Less compute lost to the development of multiple redundant codebases

Data portals: Eliminate redundant compute

Let me start with an anecdote...

- 200-300 GW astronomers in the LIGO Parameter Estimation (PE) Group have been running and rerunning the same analyses on the same set of events repeatedly
- For example, from a study being conducted by Avi Vajpeyi (Monash):
 - Avi has run large suites of inference jobs on 100'sto-1000's of LIGO triggers
 - He estimates 167 tonnes of carbon (from 1.3M cpuhrs of compute) were produced during the course of the analysis
 - Of this, 80-90% of that had was repetition of compute that had been conducted somewhere else already

• • • GW Cloud	× +						
	'bilby/job-form/			ର୍ 😨 🔺 🧧 🖃 🇊 😔 📀			
GWCloud							
	Awesome_Job & edit						
Data	Data	Types of data	Trigger time (GPS)				
Type and detectors		 Real Simulated 	1126259462.391				
Signal		Sampling frequency	Signal duration				
Injection type and details		512 hz	4 seconds ↔				
Priors & Sampler Default prior and sampler parameters							
		Carlos and Carlos					
Review Finalise and start your job	Hanford Deactivate	Livingston Deactivate	Virgo				
	Channel	Channel	Channel				
	GWOSC	GWOSC ~	GWOSC ~				
	Start typing for a custom channel.	Start typing for a custom channel.	Start typing for a custom channel.				
	Minimum frequency	Minimum frequency	Minimum frequency				
	20	20	20				
	Maximum frequency	Maximum frequency	Maximum frequency				
	1024	1024	1024				
	Save and continue						

GW Cloud	× +					
A ▷ C □	au/bilby/job-form/					
GWCloud						
	Awesome_Job & edit My awesome inference job & edit					
ata /pe and detectors	Data	Data type				real
		Trigger time				1126259462.391
Signal		Sampling frequ	iency			512
Injection type and details		Signal duration	ı			4
Priors & Sampler						
Default prior and sampler parameters	Detectors					
Review		Detector	Active	Channel	Minimum frequency	Maximum frequency
nalise and start your job		Hanford	Activated	GWOSC	20	1024
		Livingston	Activated	GWOSC	20	1024
		Virgo	Deactivated	GWOSC	20	1024
	Signal & Parameters	No signal inje	cted			
	Priors	4s				
	Sampler Parameters	Live points				1000
		Auto-correlati	on steps			10
		Maximum step	95			5000
		Minimum walk	IS			1000
		Stonning criter	ria			0.1

C □ △ gwcloud. GWCloud							🦻 🔺 🚥 @ Grego	ory Poole (∋ Logo
	Public	Jobs		Switch to my jobs + Start a new job					
	Q preferr	ed	Past year 🚓						
	User	Name	Description	Status	Labels	Actions			
	Paul Lasky	GW150914	Results for gravitational wave event GW150914	Completed	Production Run Preferred	View			
	Paul Lasky	GW151012	Results for gravitational wave event GW151012	Completed	Production Run Preferred	View			
	Paul Lasky	GW170104	Results for gravitational wave event GW170104	Completed	Production Run Preferred	View			
	Paul Lasky	GW170729	Results for gravitational wave event GW170729	Completed	Production Run Preferred	View			
	Paul Lasky	GW170823	Results for gravitational wave event GW170823	Completed	Production Run Preferred	View			


```
%
   9 from gwcloud_python import GWCloud
   8
     gwc_token = 'token_here'
   6
     gwc = GWCloud(token=gwc_token)
   5
   4
    jobs, errors = gwc.get_preferred_job_list()
   3
   1 for job in jobs:
print(job)
 10
                                                                   100% ≡ 10/10 In : 1
        script.py[+]
NORMAL
                                                             pyt…
```


Software Optimisation: New capabilities & New responsibilities Linus Torvalds gave a talk about Git at Google. At this point in the talk he is speaking about how fast Git is at merging:

youtu.be/4XpnKHJAok8?t=3160

... he makes an interesting point that has stuck with me for a long time:

"The only thing that matters is how fast can you merge?

. . . .

That is the kind of performance that actually changes how you work."

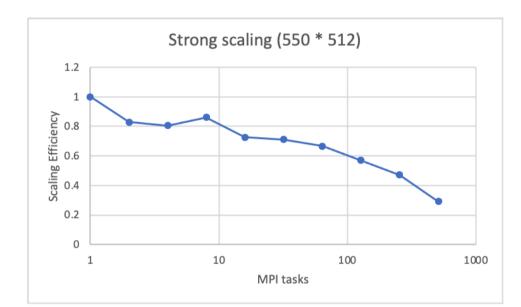
So ... the benefit of performance isn't really about doing things faster, it's about opening-up *whole new capabilities*.

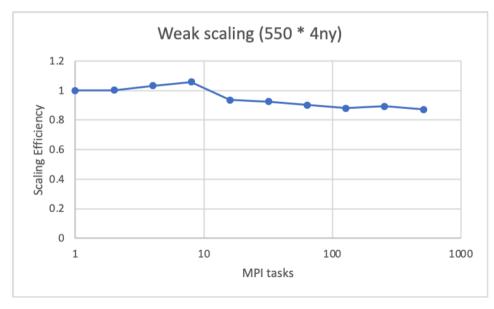

Optimisation: Example 1/2

Rory Smith (Monash) won an ADACS MAP allocation to optimise a "workhorse" GW waveform generator for coalescing binaries

ADACS achieved an order of magnitude speed-up.

Enables MC Bayesian inference on large samples of LIGO triggers





Bernhard Mueller (Monash) won an ADACS MAP allocation to optimise a a 6-D Boltzmann solver developed to model neutrino transport in corecollapse supernovae

Excellent weak scaling, and reasonable strong scaling up to 100 MPI tasks

paves the way for the first multidimensional (2D) supernova simulations with Boltzmann neutrino transport

- For smaller/repetitive/regular execution, compute savings from optimisation can add up
 - drives a *reduction* in demand
- But for some cases particularly large-scale execution:
 - ... we tend to just run larger problems
 - … it allows us to scale to larger infrastructure
- Both of which just sustain or even drive an *increase* in demand

Should we/how can we organise as a community to manage this?