ANITA Summer School on Cosmic Explosions, USNW, Canberra, 3 February 2020

VIASSIVE Stars

JINA-CEE

79L1

不改道研究听

SJTU ASTRD 3D

Alexander Heger

OzGrav

ARC Centre of Excellence for Gravitational Wave Discovery

30 Doradus Details Hubble Space Telescope • WFPC2 • NICMOS

PRC99-33b • STScI OPO • N. Walborn (STScI), R. Barbá (La Plata Observatory) and NASA

The Most Massive Stars Today

R136

- young massive star cluster
- Age around 1.5 Myr
- Star "a1": maybe 200 M_o initial mass
- (Crother et al. 2010)

Evolution of Center for Different Initial Masses

Once formed, the evolution of a star is governed by gravity: continuing contraction to higher central densities and temperatures

Nuclear Burning Stages in Stars

Hydrogen-Burning: pp Chains

Energy release: Q(pp1) = 26.20 MeV Q(pp2) = 25.67 MeV Q(pp3) = 19.20 MeVReaction rate: $\langle \sigma v \rangle \propto T^4$

Hydrogen Burning: CNO Bi-Cycle

$${}^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$$

$${}^{13}N \rightarrow {}^{13}C + e^{+} + \nu$$

$${}^{13}C + {}^{1}H \rightarrow {}^{14}N + \gamma$$

$${}^{13}C + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^{+} + \nu$$

$${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He$$

$${}^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{17}F \rightarrow {}^{17}O + e^{+} + \nu$$

$${}^{17}O + {}^{1}H \rightarrow {}^{14}N + {}^{4}He$$

Energy release: Q(CNO) = 24.97 MeV

Reaction rate: $\langle \sigma v \rangle \propto T^{16}$

Branching: CNO-1 : CNO-2 \sim 10,000 : 1

Hydrogen Burning: CNO Bi-Cycle

- Usually the beta-decays are fast compared to the capture reactions, (p,γ).
- ¹⁴O: $\tau_{1/2} = 70 \text{ sec}$ ¹⁵O: $\tau_{1/2} = 122 \text{ sec}$ ¹³N: $\tau_{1/2} = 10 \text{ min}$ ¹⁷F: $\tau_{1/2} = 64 \text{ sec}$ ¹⁸O: $\tau_{1/2} = 110 \text{ min}$
- ${}^{14}N(p,\gamma){}^{15}O$ usually is the slowest "bottleneck" reaction.
- CNO cycle burning converts most CNO isotopes into ¹⁴N.

Competition of Hydrogen-Burning Modes

Transition from pp-chains in low-mass stars (low T) to CNO chains in high-mass stars (high T)

Hydrogen Burning by CNO Cycle

Helium Burning

Step 1: ⁴He + ⁴He \rightleftharpoons ⁸Be Built up equilibrium abundance of ⁸Be Lifetime of ⁸Be is only 2.6 × 10⁻¹⁶ s!

Step 2: ${}^8\text{Be} + {}^4\text{He} \rightarrow {}^{12}\text{C} + \gamma$

 $Q_{3lpha}=$ 7.275 MeV $<\sigma v> \propto
ho^2 T^{40}$

Helium Burning Level Scheme

Additional Helium Burning Reactions

Oxygen Production

 ${}^{4}\mathrm{He} + {}^{12}\mathrm{C} \rightarrow {}^{16}\mathrm{O} + \gamma$

 $Q=7.162~{
m MeV}$

 $\langle \sigma v
angle ~ \propto
ho \, T^{40}$

The final abundance of carbon is set by the competition of 3α and ${}^{12}C(\alpha, \gamma){}^{16}O$ reactions;

The production of 16 O can only start when a sufficient amount of 12 C has been made.

Competition of Helium Burning Reactions

¹²C Production as a function of ¹²C(α,γ) and 3α reaction rates

Carbon mass fraction at the end of helium burning depends the reaction rates and the mass of the star

~2000 stellar models

(West+ 2013)

Carbon and Oxygen Burning

Carbon Burning

,	13.931
,	-2.605
,	2.238
: ,	4.616
α,	-0.114
	, , , α,

Average $Q = 13 \,\mathrm{MeV}$

Oxygen Burning ${}^{16}O + {}^{16}O \rightarrow {}^{32}S + \gamma$, 16.541 $\rightarrow {}^{31}P + p$, 7.677 $\rightarrow {}^{31}S + n$, 1.453 $\rightarrow {}^{28}Si + \alpha$, 9.593 $\rightarrow {}^{24}Mg + 2\alpha$, -0.393 Average Q = 16 MeV

Neutrino losses from electron/positron pair annihilation

- Important for carbon burning and beyond
- For T>10⁹ K (about 100 keV), occasionally:

 $\begin{array}{c} \gamma \rightarrow e^{+} + e^{-} \\ \text{and usually} \\ e^{+} + e^{-} \rightarrow 2\gamma \\ \text{but sometimes} \\ e^{+} + e^{-} \rightarrow \overline{\nu_{e}} + \nu_{e} \end{array}$

The neutrinos exit the stars at the speed of light while the e^{+,} e⁻, and the γ's all stay trapped.

•

- This is an important energy loss with $\epsilon_{\nu} \approx -10^{15} \ (T/10^9 K)^9 \ erg \ g^{-1} \ s^{-1}$
- For carbon burning and beyond, each burning stage gives about the same energy per nucleon, thus the lifetime goes down as T⁻⁹

The sun as seen by Kamiokande

Neon Burning

Neon burning proceeds by a combination of photo-disintegrations and α captures:

 $^{20}\mathrm{Ne} + \gamma
ightarrow {}^{16}\mathrm{O} + {}^{4}\mathrm{He} \;, \quad Q = -4.73 \,\mathrm{MeV}$

This reaction dominates over the inverse reaction known from helium burning for $T>1.5 imes10^9$ K.

Subsequently, the $^4{\rm He}$ is captured on another $^{20}{\rm Ne}$ nucleus: $^{20}{\rm Ne}+\,^4{\rm He}\rightarrow\,^{24}{\rm Mg}+\gamma.$

The net result is $2^{20}\text{Ne} + \gamma \rightarrow {}^{16}\text{O} + {}^{24}\text{Mg} + \gamma$, $Q = +4.583 \,\text{MeV}$

Carbon and Oxygen Burning

Carbon Burning

,	13.931
,	-2.605
,	2.238
: ,	4.616
α,	-0.114
	, , , α,

Average $Q = 13 \,\mathrm{MeV}$

Oxygen Burning ${}^{16}O + {}^{16}O \rightarrow {}^{32}S + \gamma$, 16.541 $\rightarrow {}^{31}P + p$, 7.677 $\rightarrow {}^{31}S + n$, 1.453 $\rightarrow {}^{28}Si + \alpha$, 9.593 $\rightarrow {}^{24}Mg + 2\alpha$, -0.393 Average Q = 16 MeV

Silicon/Sulfur Burning

Actually, often we have more sulfur in the star than there is silicon, but it is custom to call this phase "silicon burning".

Typical burning temperature is $3...3.5 \times 10^9$ K.

Similar to neon burning, silicon burning proceeds as a series of photo-disintegration reactions, mostly, (γ, α) , and helium capture reactions, (α, γ) to build up iron group elements.

$$(\gamma, \alpha) \rightleftharpoons (\alpha, \gamma)$$

At the high T and ρ of these conditions, also weak reactions occur, converting protons into neutrons and leading to a *neutron excess*. This allows to actually make stable iron isotopes.

Beyond Silicon Burning

NSE distribution for $T=3.5\times10^9$ K, $\rho=10^7\,{\rm g/cm^3}$ After silicon burning T and ρ is so high that the nuclei are in **nuclear statistical equilibrium**, i.e., the reactions are fast compared to the evolution time-scale of the star, and the abundance distribution of the nuclei is given by a *Saha equation*.

Summary of Energies

Nuclear Fuel	Process	T _{threshold} 10 ⁶ K	Products	Energy per Nucleon (MeV)
Н	p-p	~4	Не	6.55
Н	CNO	15	He	6.25
He	3α	100	C, 0	0.61
С	C + C	600	O, Ne, Na, Mg	0.54
Ο	0 + 0	1000	Mg, S, P, Si	~0.3
Si	Nuc. eq.	3000	Co, Fe, Ni	<0.18

Nitrogen Burning ¹⁴N(α,γ)¹⁸F($\beta^+\nu_e$)¹⁸O(α,γ)²²Ne

- •¹⁴N is made as slowest reactant in CNO cycle
- It is made from initial metals, not as a primary product
- Depending on metallicity, the abundance can be come significant; it will be more important for more metal-rich stars.
- ¹⁴N burning occurs at the onset before central helium burning and can have its own convective burning phase, take a few % of helium burning time.

Nuclear Burning Stages (20 M_o star of solar composition)

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	$4 H \rightarrow {}^{CNO} He$
He	O, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He⁴ → ¹²C ¹²C(α,γ)¹6O
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	²⁰ Ne(γ,α) ¹⁶ O ²⁰ Ne(α,γ) ²⁴ Mg
0	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si,S	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

Mufti-Dimensional Convection

(Meaken & Arnett 2007)

The Death of the Stars

Explosive Nucleosynthesis

in supernovae from massive stars

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (s)	Main Reaction
Innermost ejecta	<i>r</i> -process? vp-process	-	>10?	1	(n,γ), β ⁻
Si, O	⁵⁶ Ni	iron group	>4	0.1	(α,γ)
Ο	Si, S	CI, Ar, K, Ca	3 - 4	1	¹⁶ O + ¹⁶ O
O, Ne	O, Mg, Ne	Na, Al, P	2 - 3	5	(γ,α)
		<i>p</i> -process ¹¹ B, ¹⁹ F, ¹³⁸ La, ¹⁸⁰ Ta	2 - 3	5	(ɣ,n)
		<i>v</i> -process		5	(v, v'), (v, e -)

Overview:

Energy Scales

Log E	Explosion	Thermonuclear
39	X-ray Bursts	\checkmark
40	Long-Duration He Bursts	\checkmark
41		
42	X-ray Superbursts	\checkmark
43		
44		
45	Classical Novae	\checkmark
46		
48	Faint SN (visible LC?)	
49	SN (visible LC)	
50	Bright SN (LC?)	
51	SN (kinetic)	SN Type la total
52	Hypernova? GRB?	Pair-SN total (low-mass end)
53	SN (neutrinos – several 10 ⁵³ erg)	Pair-SN total (upper limit)
54	(a lot of energy - 0.5 $M_{\odot} c^2$)	
55	GR He SN	GR He SN (upper limit)
56	GR H SN, Z > 0 (Fuller <i>et al.</i> 1986)	\checkmark

Overview: Varieties of Cosmic Explosions (of most kind)

⁽Nomoto 2002, priv. com.)

Fates...

The Engines of SNe

Massive Star Fates as Function of **Initial Mass** (solar metallicity)

Signatures of Stellar Structure? 0.6SN outcomes due to - Stellar structure 0.50.4 $\xi_{2.5}$ 0.3**Explosion** 0.2**Shock dies Black Hole** 0.1**Compactness Parameter** 0.0 M/M_{\odot} $\xi_M = \frac{1}{R(M_{bary} = M)/1000 \,\mathrm{km}} \big|_{t_{bounce}}$ 251520

 $M_{\rm ZAMS} [M_{\odot}]$

Mueller+ (2016)

(O'Conner & Ott 2011)

Pulsational Pair Instability Supernovae

Plot after data from Woosley (2016)

Nuclear Burning Stages

Burning	Burning stages		20 M_{\odot} Star		_☉ Star
Fuel	Main Product	Т (10 ⁹ К)	Time (yr)	T (10 ⁹ K)	Time (yr)
н	He	0.02	10 ⁷	0.1	2×10 ⁶
He	0, C	0.2	10 ⁶	0.3	2×10 ⁵
C	Ne, Mg	0.8	10 ³	1.2	10
Ne	O, Mg	1.5	3	2.5	3×10 -6
0	Si, S	2.0	0.8	3.0	2×10 -6
Si	Fe	3.5	0.02	4.5	3×10 ⁻⁷

initial mass (solar masses)

Supermassive Stars

